Finding right drug balance for Parkinson’s patients

Press Release:

Parkinson’s disease is most commonly treated with levodopa, a drug which alleviates the slowing of bodily movements, called bradykinesia, found in Parkinson’s disease patients.

But the benefits of levodopa wear off as the disease progresses. The relationship between its dosage and its effectiveness becomes fuzzy, and high doses can result in dyskinesia, which are involuntary and uncontrollable movements.

To better understand the underlying reasons behind these effects, researchers from the Université de Montréal, University of Bologna, and University of Ottawa created a model of the interactions between levodopa, dopamine, and the basal ganglia, an area of the brain that plays a crucial role in Parkinson’s disease. They discuss their findings in the journal Chaos, from AIP Publishing.

Continue reading “Finding right drug balance for Parkinson’s patients”

New study gives clue to the cause, and possible treatment of Parkinson’s Disease

Press Release:

Researchers from Brain Research Institute, Niigata University, Japan may have unraveled a new approach that could revolutionize the treatment, prevention, and possibly reversal of the damages that could lead to Parkinson’s Disease (PD). This novel finding utilizing the cellular and zebrafish models, demonstrated how the leakage of mitochondrial dsDNA into the cytosol environment of the cell can contribute to the impairment of brain tissue of patients with PD.

Parkinson’s disease is the second most common neurodegenerative disease, and its prevalence has been projected to double over the next 30 years.

These sobering statistics and the quest for PD prognostic marker discovery inspired a team of scientists led by Prof. Hideaki Matsui to build upon previous knowledge that link mitochondrial dysfunction and lysosomal dysfunction to PD. In an interview Prof. Matsui said, “Our results showed for the first time that cytosolic dsDNA of mitochondrial origin leaking and escaping from lysosomal degradation can induce cytotoxicity both in cultured cells, as well as in zebrafish models of Parkinson’s disease.”

Continue reading “New study gives clue to the cause, and possible treatment of Parkinson’s Disease”

Increased risk of Parkinson’s disease in patients with schizophrenia

A new study conducted at the University of Turku, Finland, shows that patients with a schizophrenia spectrum disorder have an increased risk of Parkinson’s disease later in life. The increased risk may be due to alterations in the brain’s dopamine system caused by dopamine receptor antagonists or neurobiological effects of schizophrenia.

The record-based case-control study was carried out at the University of Turku in collaboration with the University of Eastern Finland. The study examined the occurrences of previously diagnosed psychotic disorders and schizophrenia in over 25,000 Finnish Parkinson’s disease (PD) patients treated in 1996-2019.

Continue reading “Increased risk of Parkinson’s disease in patients with schizophrenia”

Brain structure linked to symptoms of restless legs syndrome

Press Release:

MINNEAPOLIS – People with restless legs syndrome may have changes in a portion of the brain that processes sensory information, according to a study published in the April 25, 2018, online issue of Neurology®, the medical journal of the American Academy of Neurology.

Restless legs syndrome is a disorder that causes uncomfortable sensations in the legs, accompanied by an irresistible urge to move them. It often occurs in the evening and at night, sometimes affecting a person’s ability to sleep. In some cases, exercise may reduce symptoms. Iron supplements may also be prescribed if there is an iron deficiency. For more serious cases, there are also medications, but many have serious side effects if taken too long.

“Our study, which we believe is the first to show changes in the sensory system with restless legs syndrome, found evidence of structural changes in the brain’s somatosensory cortex, the area where sensations are processed,” said study author Byeong-Yeul Lee, PhD, of the University of Minnesota in Minneapolis. “It is likely that symptoms may be related to the pathological changes in this area of the brain.”

Continue reading “Brain structure linked to symptoms of restless legs syndrome”

Self-tuning brain implant could help treat patients with Parkinson’s disease

Stimulating and sensing electrodes are implanted in the brain and connect to small computer under the skin. Data from this computer can be read by an external device.

Press Release:

Deep brain stimulation has been used to treat Parkinson’s disease symptoms for 25 years, but limitations have led researchers to look for ways to improve the technique. This study describes the first fully implanted DBS system that uses feedback from the brain itself to fine-tune its signaling. The study was supported by the National Institutes of Health’s Brain Research through Advancing Innovative Technologies (BRAIN) Initiative and the National Institute of Neurological Disorders and Stroke (NINDS).

“The novel approach taken in this small-scale feasibility study may be an important first step in developing a more refined or personalized way for doctors to reduce the problems patients with Parkinson’s disease face every day,” said Nick B. Langhals, Ph.D., program director at NINDS and team lead for the BRAIN Initiative.

Deep brain stimulation is a method of managing Parkinson’s disease symptoms by surgically implanting an electrode, a thin wire, into the brain. Traditional deep brain stimulation delivers constant stimulation to a part of the brain called the basal ganglia to help treat the symptoms of Parkinson’s. However, this approach can lead to unwanted side effects, requiring reprogramming by a trained clinician. The new method described in this study is adaptive, so that the stimulation delivered is responsive in real time to signals received from the patient’s brain.

Continue reading “Self-tuning brain implant could help treat patients with Parkinson’s disease”

Tomatoes offer affordable source of Parkinson’s disease drug

Press Release:

Scientists have produced a tomato enriched in the Parkinson’s disease drug L-DOPA in what could become a new, affordable source of one of the world’s essential medicines.

The development of the genetically modified (GM) tomato has implications for developing nations where access to pharmaceutical drugs is restricted.

This novel use of tomato plants as a natural source of L-DOPA also offers benefits for people who suffer adverse effects – including nausea and behavioral complications – of chemically synthesised L-DOPA .

Tomato – was chosen as a widely cultivated crop that can be used for scaled up production and potentially offering a standardised and controlled natural source of L-DOPA .

Continue reading “Tomatoes offer affordable source of Parkinson’s disease drug”

Restless legs syndrome study identifies 13 new genetic risk variants

Press Release:

A new study into the genetics underlying restless legs syndrome has identified 13 previously-unknown genetic risk variants, while helping inform potential new treatment options for the condition.

As many as one in ten people of European ancestry is affected by restless legs syndrome, in which sufferers feel an overwhelming urge to move, often in conjunction with unpleasant sensations, usually in the legs. Rest and inactivity provoke the symptoms, whereas movement can lead to temporary relief. The condition is chronic and can get progressively worse, with long-lasting effects on patients’ mental and physical health. People with restless legs syndrome have substantially impaired sleep, reduced overall quality of life, and increased risk of depression, anxiety disorders, hypertension, and, possibly, cardiovascular disease.

For around one in 50 people, the condition can be severe enough to require chronic medication, which may in turn have potentially serious side effects.

Continue reading “Restless legs syndrome study identifies 13 new genetic risk variants”