How injured nerves stop themselves from healing

Press release:

Nerves release a protein at the injury site that attracts growing nerve fibers and thus keeps them entrapped there. This prevents them from growing in the right direction to bridge the injury. The research team headed by Professor Dietmar Fischer reports in the journal Proceedings of the National Academy of Sciences (PNAS) from 25. May 2021.

There must be another cause

Three main causes for the inability of injured nerves of the central nervous system, or CNS, to regenerate have been known to date: the insufficient activation of a regeneration program in injured nerve cells that stimulates the growth of fibers, so-called axons; the formation of a scar at the site of injury that is difficult for nerve fibers to penetrate; and an inhibitory effect of molecules in the nerve on regrowing axons. “Although experimental approaches have been found in recent decades to address these individual aspects by therapeutic means, even combinatorial approaches have shown only little success,” says Fischer. “So there must be other yet unknown causes for why nerve fibers in the CNS don’t regenerate.”

Using the optic nerve as a model, his team has now shown another cause for the regenerative failure in the CNS, which came as a surprise to the researchers. The underlying mechanism is not based on inhibition of axon growth, as in the previously identified causes, but rather on a positive effect of a protein at the site of injury of the nerve. This molecule is a so-called chemokine known as CXCL12. “The protein actually promotes the growth of axons and attracts regenerating fibers. It is, therefore, chemoattractive,” explains Fischer. However, this chemoattraction turned out to be a significant problem after nerve injury in living animals.

Trapped nerve fibers

The Bochum-based scientists showed that this protein is released at the nerve’s lesion site and, as a result, keeps the axons at the injured area through the chemoattractive effect. As a result, some fibers that had already regenerated across the injury site even changed direction, growing back to the injury site. The regrowing fibers thus remained trapped due to the attraction of CXCL12.

The researchers worked out this effect when they specifically eliminated the receptor for CXCL12, called CXCR4, in the retinal nerve cells, rendering them blind to this protein. “Surprisingly, this led to greatly increased fiber growth in the injured optic nerves, and axons showed significantly less regrowth back to the injury site,” Dietmar Fischer points out.

A potential starting point for new drugs

The researchers then investigated where at the injury site the CXCL12 originated. They found out that about eight percent of the nerve cells in the retina produce this protein themselves, transport it along their fibers to the injury site in the optic nerve, and release it there from the severed axons. “It is still unknown why some of these nerve cells make CXCL12 and others make the receptor,” says Fischer. “We don’t yet understand the physiological role of the protein, but we can see that it is a major inhibitor of neural repair.”

In further experiments, the Bochum-based researchers showed that knocking out CXCL12 in retinal nerve cells so that it could no longer be released at the injury site equally improved axonal regeneration into the optic nerve. “These new findings open the opportunity to develop pharmacological approaches aimed at disrupting the interaction of CXCL12 and its receptor on the nerve fibers, to free them from their captivity at the site of injury,” concludes Fischer. Whether similar approaches can also promote the regeneration of axons in other areas of the injured brain or spinal cord is the subject of current studies by his team at the Department of Cell Physiology.


Bestseller No. 1
Examination of Peripheral Nerve Injuries: An Anatomical Approach
  • Amazon Kindle Edition
  • Russell, Stephen (Author)
  • English (Publication Language)
  • 04/17/2015 (Publication Date) - Thieme (Publisher)
Bestseller No. 2
Peripheral Nerve Injuries: A Clinical Guide
  • Amazon Kindle Edition
  • Birch, Rolfe (Author)
  • English (Publication Language)
  • 464 Pages - 11/15/2012 (Publication Date) - Springer (Publisher)
SaleBestseller No. 3
Kline and Hudson's Nerve Injuries: Operative Results for Major Nerve Injuries, Entrapments and Tumors
  • Hardcover Book
  • Kim MD FACS, Daniel H. (Author)
  • English (Publication Language)
  • 528 Pages - 12/12/2007 (Publication Date) - Saunders (Publisher)
SaleBestseller No. 4
Peripheral Nerve Injury: An Anatomical and Physiological Approach for Physical Therapy Intervention
  • Carp PT PhD GCS, Stephen J. (Author)
  • English (Publication Language)
  • 384 Pages - 04/21/2015 (Publication Date) - F.A. Davis Company (Publisher)
SaleBestseller No. 5
Trigeminal Nerve Injuries
  • English (Publication Language)
  • 378 Pages - 08/23/2016 (Publication Date) - Springer (Publisher)
SaleBestseller No. 6
Nerves and Nerve Injuries: Vol 2: Pain, Treatment, Injury, Disease and Future Directions
  • Hardcover Book
  • English (Publication Language)
  • 1126 Pages - 05/07/2015 (Publication Date) - Academic Press (Publisher)
Bestseller No. 7
Peripheral Nerve Injuries: Principles of Diagnosis
  • Hardcover Book
  • Webb Haymaker and Barnes Woodhall (Author)
  • German (Publication Language)
  • 227 Pages - 01/01/1945 (Publication Date) - W.B. Saunders Company (Publisher)
Bestseller No. 8
Nerve: A Physician Turned Patient and Her Courageous Recovery From Traumatic Brain Injury
  • Amazon Kindle Edition
  • Pato, Michele T. (Author)
  • English (Publication Language)
  • 198 Pages - 10/31/2023 (Publication Date) - Springer (Publisher)
Bestseller No. 9
Feamero Radial Nerve Palsy Splint, Adjustable Finger Extension Brace, Lift Elastic Splint for Drop Wrist, Radial Nerve Injury, Mcp Arthroplasty, Crutch Palsy Treatment, Fit Left & Right Hand (Plastic)
  • Ergonomic Design - FEAMERO Radial nerve palsy splint mimics tendons to enhance finger and hand functionality to help extend,support wrist,while straighten, lift up the finger,wrist is splinted in slight extension for maximum function for improve drop wrist symptoms. This splint is a very practical option for patients to wear while they wait for the radial nerve to regenerate,improved grip through dynamic,resistive support of the hand, wrist and finger.
  • Optimum Rehab Option - Assist exercises to strengthen your muscles and increase wrist and fingers range of motion;support and immobilize the wrist and hand, prevent you from re-injuring while the radial nerve healing; relieve symptoms while maintaining movement of your wrist and hand, maintain muscle strength can help to heal and improve nerve function, Compensate for impaired nerve function, help actively extend them. Unisex, can be worn on either the left or right hand.
  • Ultra Performance - Modified splint co-design with pro therapists, low profile splint is easy to construct and uses elastic to pull the fingers back into the extended position;Split finger design-Four functional finger adjust elastic strap-loops,stretching force and angle can be adjusted individually, lager adjustable range satisfy varying extention needs. Hand splint features cushioned padding keep the upper limbs, wrist and fingers in the optimal healing position.
  • Escalate Wearing Experience - Ergonomically shaped for snug fit and maintain optimal healing position.Two wrist straps, palm strap are all adjustable, ensure a secure fit. Semi-open design allow partial wrist move and full fingers usage.Minimalist appearance, subtle, low-profile, made of lightweight material for no burden to wear, foam padding added comfort, lined with skin-friendly cotton, gentle and non-irritating.
  • Escalate Wearing Experience - Please rest assured to buy!If you are not satisfied with the function of the product, or the size is not suitable, you can contact us immediately for free return. an affordable and more convenient wrist and fingers radial nerve parsy brace choice; immobilization can be made possible with a splint,controlling the wrist, fingers, and triceps;easy to use and can effectively restore finger joint movement, prevent and reduce flexion contracture.
Bestseller No. 10
Facial Danger Zones: Avoiding Nerve Injury in Facial Plastic Surgery
  • Used Book in Good Condition
  • Hardcover Book
  • Seckel, Brooke R (Author)
  • English (Publication Language)
  • 52 Pages - 01/15/1994 (Publication Date) - Quality Medical Pub (Publisher)

I get commissions for purchases made through links on this website. As an Amazon Associate I earn from qualifying purchases.